Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
The convergence of edge computing and artificial intelligence requires that inference is performed on-device to provide rapid response with low latency and high accuracy without transferring large amounts of data to the cloud. However, power and size limitations make it challenging for electrical accelerators to support both inference and training for large neural network models. To this end, we propose Trident, a low-power photonic accelerator that combines the benefits of phase change material (PCM) and photonics to implement both inference and training in one unified architecture. Emerging silicon photonics has the potential to exploit the parallelism of neural network models, reduce power consumption and provide high bandwidth density via wavelength division multiplexing, making photonics an ideal candidate for on-device training and inference. As PCM is reconfigurable and non-volatile, we utilize it for two distinct purposes: (i) to maintain resonant wavelength without expensive electrical or thermal heaters, and (ii) to implement non-linear activation function, which eliminates the need to move data between memory and compute units. This multi-purpose use of PCM is shown to lead to significant reduction in energy consumption and execution time. Compared to photonic accelerators DEAP-CNN, CrossLight, and PIXEL, Trident improves energy efficiency by up to 43% and latency by up to 150% on average. Compared to electronic edge AI accelerators Google Coral which utilizes the Google Edge TPU and Bearkey TB96-AI, Trident improves energy efficiency by 11% and 93% respectively. While NVIDIA AGX Xavier is more energy efficient, the reduced data movement and GST activation of Trident reduce latency by 107% on average compared to the NVIDIA accelerator. When compared to the Google Coral and the Bearkey TB96-AI, Trident reduces latency by 1413% and 595% on average.more » « less
-
As technology scales, Network-on-Chips (NoCs), currently being used for on-chip communication in manycore architectures, face several problems including high network latency, excessive power consumption, and low reliability. Simultaneously addressing these problems is proving to be difficult due to the explosion of the design space and the complexity of handling many trade-offs. In this paper, we propose IntelliNoC, an intelligent NoC design framework which introduces architectural innovations and uses reinforcement learning to manage the design complexity and simultaneously optimize performance, energy-efficiency, and reliability in a holistic manner. IntelliNoC integrates three NoC architectural techniques: (1) multifunction adaptive channels (MFACs) to improve energy-efficiency; (2) adaptive error detection/correction and re-transmission control to enhance reliability; and (3) a stress-relaxing bypass feature which dynamically powers off NoC components to prevent overheating and fatigue. To handle the complex dynamic interactions induced by these techniques, we train a dynamic control policy using Q-learning, with the goal of providing improved fault-tolerance and performance while reducing power consumption and area overhead. Simulation using PARSEC benchmarks shows that our proposed IntelliNoC design improves energy-efficiency by 67% and mean-time-to-failure (MTTF) by 77%, and decreases end-to-end packet latency by 32% and area requirements by 25% over baseline NoC architecture.more » « less
An official website of the United States government

Full Text Available